Using an oil, like heptane, or monomers, such as styrene, butyl acrylate, or methyl methacrylate, the exfoliation of graphite to graphene can be obtained. When graphite is added to the interface between an oil or monomer and water, the graphite spontaneously exfoliates to graphene. Employing simple shaking either by hand or using an external shaker, promote more interfaces which causes more graphite to exfoliate to lower the overall energy of the system. This leads to the formation of water–in–oil emulsions. These emulsions allow for diversity in the types of materials that can be obtained through this method, or the solvent interfacial trapping method (SITM).
Publications
Graphene’s Effect on the Mechanism of Radical Polymerization with In Situ Graphene Composites
Ward, S.P.; Adamson, D.H.
Carbon Trends, 2022, DOI: 10.1016/j.carte.2022.100233
Chromatographic Approach to Isolate Exfoliated Graphene
Abeykoon, P. G.; Ward, S. P.; Chen, F.; Adamson, D. H.
Langmuir, 2021, DOI: 10.1021/acs.langmuir.1c00917
Interface-exfoliated Graphene-based Conductive Screen-printing Inks: Low-loading, Low-cost, and Additive-free
Chen, F.; Varghese, D.; McDermott, S. T.; George, I.; Geng, L.; Adamson, D. H.
Scientific Reports, 2020, 10, 18047
Effect of aqueous anions on graphene exfoliation
Ward, S. P.; Abeykoon, P.; McDermott, S. T.; Adamson, D. H.
Langmuir, 2020, 36, 10421-10428
PolyHIPE Foams from Pristine Graphene: Strong, Porous, and Electrically Conductive Materials Templated by a 2D Surfactant
Brown, E. E. B.; Woltornist, S. J.; Adamson, D. H.
Journal of Colloid and Interface Science, 2020, 580: 700-708
Kinetic study of surfactant-free graphene exfoliation at a solvent interface
Hui, T.; Adamson, D. H.
Carbon, 2020, 168, 354-361
Self-assembled graphene composites for flow-through filtration
Varghese, D.; Bento, J. L.; Ward, S. P.; Adamson, D. H.
ACS Applied Materials & Interfaces, 2020, 12(26):29692-29699
Pristine Graphene Microspheres by the Spreading and Trapping of Graphene at an Interface
Liyanage, C. D.; Varghese, D.; Brown, E. E. B.; Adamson, D. H.
Langmuir, 2019, 35:14310-14315
Electrical Conductivity of Graphene – Polymer Composite Foams: A Computational Study
Wang, Z.; Tian, Y.; Liang, H.; Adamson, D. H.; Dobrynin, A. V.
Macromolecules, 2019, 52:7379-7385
From Graphene-like Sheet Stabilized Emulsions to Composite Polymer Foams: Molecular Dynamics Simulations
Wang, Z.; Liang, H.; Adamson, D. H.; Dobrynin, A. V.
Macromolecules 2018 51(18):7360-7367
Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shape Responsive Materials
Woltornist, S. J.; Varghese, D.; Massucci, D.; Cao, Z.; Dobrynin, A. V.; Adamson, D. H.
Advanced Materials 2017 29:1604947
Thermal and Electrical Properties of Nanocomposites based on Self-Assembled Pristine Graphene
Bento, J. L.; Brown, E. B.; Woltornist, S. J.; Adamson, D. H.
Advanced Functional Materials 2017 27:1604277
Properites of Pristine Graphene Composites Arising from the Mechanism of Graphene-Stabilized Emulsion Formation
Woltornist, S. J.; Adamson, D. H.
Industrial & Engineering Chemistry Research 2016 55:6777-6782
Polymer/Pristine Graphene Based Composites: From Emulsions to Strong,Electrically Conducting Foams
Woltornist, S. J.; Carrillo, J.-M.; Xu, T.; Dobrynin, A. V.; Adamson, D. H.
Macromolecules 2015 48(3):687-693
Preparation of Conductive Graphene/Graphite Infused Fabrics Using an Interfacial Trapping Method
Woltornist, S. J.; Alamer, F. A.; McDannald, A.; Jain, M.; Sotzing, G. A.; Adamson, D. H.
Carbon 2015 81:38-42